STUDIES ON THE SYSTEM CrVO₄-Fe₂(MoO₄)₃

M. Kurzawa

INSTITUTE OF FUNDAMENTAL CHEMISTRY, TECHNICAL UNIVERSITY OF SZCZECIN, 42 AL. PIASTÓW, 71-065 SZCZECIN, POLAND

X-RPD and DTA revealed that $CrVO_4$ reacts with $Fe_2(MoO_4)_3$ in the solid state to form $Fe_2Cr_2V_2Mo_3O_{20}$. The thermal and X-ray characteristics of this phase have been established.

It is known from studies on the phase equilibria in the system $FeVO_4$ - $Fe_2(MoO_4)_3$ and $CrVO_4$ - $Cr_2(MoO_4)_3$ that $FeVO_4$ reacts with iron(III) molybdate to yield the phase $Fe_4V_2Mo_3O_{20}$ [1]. Chromium(III) orthovanadate does not remain in permanent equilibrium with chromium(III) molybdate, though a compound analogous to $Fe_4V_2Mo_3O_{20}$ [2] does not arise in the $CrVO_4$ - $Cr(MoO_4)_3$. On the other hand, a reaction takes place in the solid state in this system:

$$3 \operatorname{CrVO}_{4(s)} + \operatorname{Cr}_{2}(\operatorname{MoO}_{4})_{3(s)} = 3 \operatorname{CrVMoO}_{7(s)} + \operatorname{Cr}_{2}O_{3(s)}$$
(1)

It seemed of interest to investigate how CrVO4 behaves towards Fe₂(MoO4)₃.

The structures and properties of the system components, i.e. CrVO₄ and Fe₂(MoO₄)₃, are well known [3-11].

Experimental

 α -Fe₂O₃, Cr₂O₃, MoO₃, CrVO₄ and Fe₂(MoO₄)₃ were used in the experiments.

The DTA studies were performed with a Paulik-Paulik-Erdey derivatograph, in quartz crucibles, in air, at 20-1000°, at heating rate of 10 deg/min. The sample weight was 1000 mg in each case.

The phase compositions of preparation were established by means of Xray powder diffraction (an A₂ diffractometer with an HZG-4 goniometer,

> John Wiley & Sons, Limited, Chichester Akadémiai Kiadó, Budapest

and CoK_{α} radiation), via the data from the ASTM cards [12] and literature publications [1-4, 8].

Three mixtures of the appropriate oxides corresponding to 75 mol% of CrVO4 and 25 mol% of Fe₂(MoO4)₃, 66.67 mol% of CrVO4 and 33.33 mol% of Fe₂(MoO4)₃ and 50 mol% CrVO4 and 50 mol% of Fe₂(MoO4)₃, and three mixtures of CrVO4 and Fe₂(MoO4)₃ with the same compositions, were used in the experiments. The substrates in weighed proportions were ground, pastilled and calcined in air under the following conditions: $400^{\circ} \rightarrow 500^{\circ}$ (24 h); 550° (72 h); 600° (24 h); 650° (24 h); 700° (48 h); 700° (72 h). From 550° the samples were cooled down slowly to ambient temperature after each roasting cycle, ground and examined by DTA. After their compositions had been established, they were repastilled.

Results and discussion

The diffraction patterns of preparations obtained by calcining at 550° substrates corresponding to 66.67 mol% of CrVO4 and 33.33 mol% of Fe₂(MoO4)₃, irrespective of the kind of substrates used, contained not only the diffraction lines of the substrates, but also a set of lines imperceptibly differing from the diffraction lines characteristic of Fe₄V₂Mo₃O₂₀ [1]. The intensities of these lines successively increased in the diffraction patterns of preparations calcined at 600 and 650° , respectively, whereas the intensities of the lines characteristic of the substrates decreased. Substrates were not found in the preparation obtained on calcination at 700° . On the other hand, preparations corresponding to 75 mol% of CrVO4, obtained on calcination at 700° , contained CrVO4 and a phase characterized by a new reflexion set, while preparations corresponding to 50 mol% of CrVO4 contained not only this phase, but also Fe₂(MoO4)₃.

Thus, X-ray powder diffraction shows that $CrVO_4$ does not remain in permanent equilibrium with $Fe_2(MoO_4)_3$. It also reveals that a reaction takes place in the solid state in the system $CrVO_4$ - $Fe_2(MoO_4)_3$:

$$2 \operatorname{CrVO}_{4(s)} + \operatorname{Fe}_{2}(\operatorname{MoO}_{4})_{3(s)} = \operatorname{Fe}_{2} \operatorname{Cr}_{2} \operatorname{V}_{2} \operatorname{Mo}_{3} \operatorname{O}_{20(s)}$$
(2)

giving rise to a new phase, not previously reported in the literature.

The interplanar distances of the phase $Fe_2Cr_2V_2Mo_3O_{20}$ and the relative intensities of the relevant reflexions are given in (Table 1).

d,	I,
Å	%
4.75	10
4.57	5
4.34	40
4.26	20
4.14	25
3.89	40
3.80	35
3.65	50
3.40	30
3.36	75
3.29	100
3.21	25
3.17	15
3.11	20
3.04	90
3.01	10
2.96	15
2.89	10
2.77	10
2.72	5
2.66	5
2.62	5
2.51	5
2.48	5
2.45	10
2.39	15
2.36	20
2.28	20
2.24	5
2.17	5
2.14	5
2.11	10

Table 1 Interplanar distances of Fe2Cr2V2M03O20 and relative intensities for relevant reflexions

Two endothermic effects were recorded in the DTA curve (Fig. 1). The first, with a peak start temperature of $775\pm10^{\circ}$, is attributed to the incongruent melting of Fe₂Cr₂V₂Mo₃O₂₀, and the other, with a peak maximum temperature of about 910°, to solid products deposited during melting of the phase. X-ray powder diffraction on the phase Fe₂Cr₂V₂Mo₃O₂₀, heated additionally for 4 h at 790, 850 and 910°, respectively, and then cooled down rapidly to ambient temperature, demonstrated that incongruent melting of

 $Fe_2Cr_2V_2Mo_3O_{20}$ occurs, with the deposition of two solid solutions: a continuous solid solution of $Fe_{2-2x}Cr_{2x}O_3$ [13] and a solid solution of $Fe_{2-2x}Cr_{2x}(MoO_4)_3$ [14], according to the equation:

 $Fe_{2}Cr_{2}V_{2}Mo_{3}O_{20(s)} = Fe_{2-2x}Cr_{2x}O_{3(s.s.)} + Fe_{2-2x}Cr_{2x}(MoO_{4})_{3(s.s.)} + liquid$ (3)

Fig. 1 DTA curve of Fe₂Cr₂V₂Mo₃O₂₀

References

- 1 J. Walczak, J. Ziółkowski, M. Kurzawa and L. Trześniowska, Pol. J. Chem., 59 91985) 713.
- 2 J. Walczak, M. Kurzawa and E. Filipek, Thermochim. Acta, 150 (1989) 133.
- 3 M. J. Isasi, R. Saez-Puche and M. L. Veiga, Mater. Res. Bull., 23 (1988) 595.
- 4 J. Walczak and E. Filipek, J. Thermal Anal., 35 (1989) 69.
- 5 J. Amiel, D. Coleilis and D. Olivier, C. R. Acad. Sci., Paris, 263 (1966) 224.
- 6 R. C. Kerby and J. R. Wilson, Can. J. Chem., 51 (1973) 1032.
- 7 W. A. Sleight and L. H. Brixner, J. Solid State Chem., 7 (1973) 172.
- 8 V. Massarotti, G. Flor and A. Marini, J. Appl. Cryst., 14 (1981) 64.
- 9 M. H. Rapposh, J. B. Anderson and E. Kostiner, Inorg. Chem., 19 (1980) 3531.
- 10 Horng-yih Chen, Mater. Res. Bull., 14 (1979) 1583.
- 11 J. D. Kozmanov and T. A. Ugolnikova, Z. Neorg. Khim., 3 (1958) 1267.
- 12 Joint Committee of Powder Diffraction File: 5-508, 6-504, 9-387, 13-543, 24-541, 25-418, 31-641, 33-662.
- 13 A. A. Fotiev, L. L. Surat, G. A. Korablev and A. I. Tretiakov, Z. Neorg. Khim., 26 (1981) 242.
- 14 E. I. Getman and V. I. Marchenko. Z. Neorg. Khim. 30 (1985) 2088.

Zusammenfassung — Mittels DTA und Debye-Scherrer-Untersuchungen wurde festgestellt, daß CrVO4 und Fe2(MoO4)3 im festen Zustand miteinander reagieren und Fe2Cr2V2M03O20 bilden. Thermische und röntgenographische Eigenschaften dieser Phase wurden ermittelt.